Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 217
1.
Clin Interv Aging ; 19: 727-736, 2024.
Article En | MEDLINE | ID: mdl-38736560

Purpose: Construct an exercise intervention program for patients with sarcopenic obesity. Material and Methods: Based on the COM-B theoretical model and evidence-based principles, the program was constructed using qualitative methods of literature analysis and Delphi method. The Delphi panel consisted of 15 experts from the fields of clinical medicine, rehabilitation medicine, medical technology, and nursing. Results: Fifteen experts were consulted, and the consultation recovery rate was 100%; the authority coefficient of the 1st round was 0.83, with coefficients of variation ranging from 0.00 to 0.27, and importance scores ranging from (4.13±1.13) to (5±0); the authority coefficient of the 2nd round was 0.82, with coefficients of variation ranging from 0.00 to 0.20, and importance scores ranging from (4.53±0.64) to (5±0); Kendall's harmony coefficient was 0.102, 0.115, respectively, and the differences were statistically significant(P < 0.05). The constructed exercise intervention program for patients with sarcopenic obesity included 4 primary indicators, 12 secondary indicators, and 28 tertiary indicators. Conclusion: The constructed exercise intervention program for patients with sarcopenic obesity is scientific, feasible and generalizable, and can provide useful reference for related personnel to develop exercise programs for patients with sarcopenic obesity.


Delphi Technique , Exercise Therapy , Obesity , Sarcopenia , Humans , Obesity/therapy , Exercise Therapy/methods , Sarcopenia/rehabilitation , Male , Female , Middle Aged , Aged , Adult
2.
Int J Biol Sci ; 20(6): 2219-2235, 2024.
Article En | MEDLINE | ID: mdl-38617542

Nonalcoholic fatty liver disease (NAFLD) is one of the common causes of chronic liver disease in the world. The problem of NAFLD had become increasingly prominent. However, its pathogenesis is still indistinct. As we all know, NAFLD begins with the accumulation of triglyceride (TG), leading to fatty degeneration, inflammation and other liver tissues damage. Notably, structure of nucleoporin 85 (NUP85) is related to lipid metabolism and inflammation of liver diseases. In this study, the results of researches indicated that NUP85 played a critical role in NAFLD. Firstly, the expression level of NUP85 in methionine-choline-deficient (MCD)-induced mice increased distinctly, as well as the levels of fat disorder and inflammation. On the contrary, knockdown of NUP85 had the opposite effects. In vitro, AML-12 cells were stimulated with 2 mm free fatty acids (FFA) for 24 h. Results also proved that NUP85 significantly increased in model group, and increased lipid accumulation and inflammation level. Besides, NUP85 protein could interact with C-C motif chemokine receptor 2 (CCR2). Furthermore, when NUP85 protein expressed at an extremely low level, the expression level of CCR2 protein also decreased, accompanied with an inhibition of phosphorylation of phosphoinositol-3 kinase (PI3K)-protein kinase B (AKT) signaling pathway. What is more, trans isomer (ISRIB), a targeted inhibitor of NUP85, could alleviate NAFLD. In summary, our findings suggested that NUP85 functions as an important regulator in NAFLD through modulation of CCR2.


Non-alcoholic Fatty Liver Disease , Animals , Mice , Lipid Metabolism/genetics , Proto-Oncogene Proteins c-akt , Phosphatidylinositol 3-Kinases , Signal Transduction , Receptors, Chemokine , Inflammation
3.
J Am Chem Soc ; 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38683738

Palladium hydrides (PdHx) are pivotal in both fundamental research and practical applications across a wide spectrum. PdHx nanocrystals, synthesized by heating in dimethylformamide (DMF), exhibit remarkable stability, granting them widespread applications in the field of electrocatalysis. However, this stability appears inconsistent with their metastable nature. The substantial challenges in characterizing nanoscale structures contribute to the limited understanding of this anomalous phenomenon. Here, through a series of well-conceived experimental designs and advanced characterization techniques, including aberration-corrected scanning transmission electron microscopy (AC-STEM), in situ X-ray diffraction (XRD), and time-of-flight secondary ion mass spectrometry (TOF-SIMS), we have uncovered evidence that indicates the presence of C and N within the lattice of Pd (PdCxNy), rather than H (PdHx). By combining theoretical calculations, we have thoroughly studied the potential configurations and thermodynamic stability of PdCxNy, demonstrating a 2.5:1 ratio of C to N infiltration into the Pd lattice. Furthermore, we successfully modulated the electronic structure of Pd nanocrystals through C and N doping, enhancing their catalytic activity in methanol oxidation reactions. This breakthrough provides a new perspective on the structure and composition of Pd-based nanocrystals infused with light elements, paving the way for the development of advanced catalytic materials in the future.

4.
Mol Ther ; 32(5): 1479-1496, 2024 May 01.
Article En | MEDLINE | ID: mdl-38429926

Intense inflammatory response impairs bone marrow mesenchymal stem cell (BMSC)-mediated bone regeneration, with transforming growth factor (TGF)-ß1 being the most highly expressed cytokine. However, how to find effective and safe means to improve bone formation impaired by excessive TGF-ß1 remains unclear. In this study, we found that the expression of orphan nuclear receptor Nr4a1, an endogenous repressor of TGF-ß1, was suppressed directly by TGF-ß1-induced Smad3 and indirectly by Hdac4, respectively. Importantly, Nr4a1 overexpression promoted BMSC osteogenesis and reversed TGF-ß1-mediated osteogenic inhibition and pro-fibrotic effects. Transcriptomic and histologic analyses confirmed that upregulation of Nr4a1 increased the transcription of Wnt family member 4 (Wnt4) and activated Wnt pathway. Mechanistically, Nr4a1 bound to the promoter of Wnt4 and regulated its expression, thereby enhancing the osteogenic capacity of BMSCs. Moreover, treatment with Nr4a1 gene therapy or Nr4a1 agonist Csn-B could promote ectopic bone formation, defect repair, and fracture healing. Finally, we demonstrated the correlation of NR4A1 with osteogenesis and the activation of the WNT4/ß-catenin pathway in human BMSCs and fracture samples. Taken together, these findings uncover the critical role of Nr4a1 in bone formation and alleviation of inflammation-induced bone regeneration disorders, and suggest that Nr4a1 has the potential to be a therapeutic target for accelerating bone healing.


Bone Regeneration , Inflammation , Mesenchymal Stem Cells , Nuclear Receptor Subfamily 4, Group A, Member 1 , Osteogenesis , Wnt4 Protein , Mesenchymal Stem Cells/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Osteogenesis/genetics , Bone Regeneration/genetics , Animals , Mice , Wnt4 Protein/metabolism , Wnt4 Protein/genetics , Humans , Inflammation/genetics , Inflammation/metabolism , Gene Expression Regulation , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Wnt Signaling Pathway , Male , Transcription, Genetic , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Disease Models, Animal
5.
Angew Chem Int Ed Engl ; 63(20): e202403114, 2024 May 13.
Article En | MEDLINE | ID: mdl-38488787

The conversion of methane under ambient conditions has attracted significant attention. Although advancements have been made using active oxygen species from photo- and electro- chemical processes, challenges such as complex catalyst design, costly oxidants, and unwanted byproducts remain. This study exploits the concept of contact-electro-catalysis, initiating chemical reactions through charge exchange at a solid-liquid interface, to report a novel process for directly converting methane under ambient conditions. Utilizing the electrification of commercially available Fluorinated Ethylene Propylene (FEP) with water under ultrasound, we demonstrate how this interaction promote the activation of methane and oxygen molecules. Our results show that the yield of HCHO and CH3OH can reach 467.5 and 151.2 µmol ⋅ gcat -1, respectively. We utilized electron paramagnetic resonance (EPR) to confirm the evolution of hydroxyl radicals (⋅OH) and superoxide radicals (⋅OOH). Isotope mass spectrometry (MS) was employed to analyze the elemental origin of CH3OH, which can be further oxidized to HCHO. Additionally, we conducted density functional theory (DFT) simulations to assess the reaction energies of FEP with H2O, O2, and CH4 under these conditions. The implications of this methodology, with its potential applicability to a wider array of gas-phase catalytic reactions, underscore a significant advance in catalysis.

6.
Magn Reson Imaging ; 108: 29-39, 2024 May.
Article En | MEDLINE | ID: mdl-38301862

A dual Multi-Dimensional Integration (dMDI) method was proposed and demonstrated for T2* and R2* mapping. By constructing and jointly using both the original MDI term and an inversed MDI term, T2* and R2* mapping can be performed independently with intrinsic background noise suppression and spike elimination, allowing for high quantitative accuracy and robustness over a wide range of T2*. dMDI was compared to original MDI and curve fitting methods in terms of quantitative specificity, accuracy, reliability and computational efficiency. All methods were tested and compared via simulation and in vivo data. With high signal-to-noise-ratio (SNR), the proposed dMDI method yielded T2*and R2* values similar to curve fitting methods. For low SNR and background noise signals, the dMDI yielded low T2* and R2* values, thus effectively suppressing all background noise. Virtually zero spikes were observed in dMDI T2* and R2* maps in all simulation and imaging results. The dMDI method has the potential to provide improved and reliable T2* and R2* mapping results in routine and SNR-challenging scenarios.


Algorithms , Magnetic Resonance Imaging , Reproducibility of Results , Magnetic Resonance Imaging/methods , Computer Simulation , Signal-To-Noise Ratio , Phantoms, Imaging
7.
Virulence ; 15(1): 2306691, 2024 Dec.
Article En | MEDLINE | ID: mdl-38251716

Pathogenic bacteria have evolved many strategies to evade surveillance and attack by complements. Streptococcus suis is an important zoonotic pathogen that infects humans and pigs. Hyaluronidase (HylA) has been reported to be a potential virulence factor of S. suis. However, in this study, it was discovered that the genomic region encoding HylA of the virulent S. suis strain SC19 and other ST1 strains was truncated into four fragments when aligned with a strain containing intact HylA and possessing hyaluronidase activity. As a result, SC19 had no hyaluronidase activity, but one truncated HylA fragment, designated as HylS,' directly interacted with complement C3b, as confirmed by western ligand blotting, pull-down, and ELISA assays. The deposition of C3b and membrane attack complex (MAC) formation on the surface of a HylS'-deleted mutant (ΔhylS') was significantly increased compared to wild-type SC19. In human sera and whole blood, ΔhylS' survival was significantly reduced compared to that in SC19. The resistance of ΔhylS' to macrophages and human polymorphonuclear neutrophil PMNs also decreased. In a mouse infection model, ΔhylS' showed reduced lethality and lower bacterial load in the organs compared to that of SC19. We conclude that the truncated hyaluronidase HylS' fragment contributes to complement evasion and the pathogenesis of S. suis.


Streptococcal Infections , Streptococcus suis , Mice , Animals , Humans , Swine , Immune Evasion , Complement C3b , Hyaluronoglucosaminidase/genetics , Virulence Factors/genetics , Complement System Proteins , Immunologic Factors , Streptococcal Infections/microbiology , Bacterial Proteins/genetics
8.
Matrix Biol ; 127: 8-22, 2024 Mar.
Article En | MEDLINE | ID: mdl-38281553

Lumbar spinal canal stenosis is primarily caused by ligamentum flavum hypertrophy (LFH), which is a significant pathological factor. Nevertheless, the precise molecular basis for the development of LFH remains uncertain. The current investigation observed a notable increase in thrombospondin-1 (THBS1) expression in LFH through proteomics analysis and single-cell RNA-sequencing analysis of clinical ligamentum flavum specimens. In laboratory experiments, it was demonstrated that THBS1 triggered the activation of Smad3 signaling induced by transforming growth factor ß1 (TGFß1), leading to the subsequent enhancement of COL1A2 and α-SMA, which are fibrosis markers. Furthermore, experiments conducted on a bipedal standing mouse model revealed that THBS1 played a crucial role in the development of LFH. Sestrin2 (SESN2) acted as a stress-responsive protein that suppressed the expression of THBS1, thus averting the progression of fibrosis in ligamentum flavum (LF) cells. To summarize, these results indicate that mechanical overloading causes an increase in THBS1 production, which triggers the TGFß1/Smad3 signaling pathway and ultimately results in the development of LFH. Targeting the suppression of THBS1 expression may present a novel approach for the treatment of LFH.


Ligamentum Flavum , Smad3 Protein , Thrombospondins , Transforming Growth Factor beta1 , Animals , Mice , Fibrosis , Hypertrophy/metabolism , Ligamentum Flavum/metabolism , Ligamentum Flavum/pathology , Signal Transduction , Stress, Mechanical , Thrombospondins/genetics , Thrombospondins/metabolism , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , Smad3 Protein/genetics , Smad3 Protein/metabolism
9.
BMC Nurs ; 23(1): 54, 2024 Jan 19.
Article En | MEDLINE | ID: mdl-38238706

BACKGROUND: China is experiencing an aging population, leading to a significant demand for "Internet + nursing services" tailored for elderly individuals. However, there are many risk problems in the process of nurse service, which hinder the development of the service, and a scale is needed to assess the risk problems faced by nurses in "Internet + nursing services" for the elderly. OBJECTIVE: The purpose of this study is to develop an assessment scale for risk factors and outcomes related to nurses' involvement in the "Internet + Nursing Service" for the elderly and to assess its reliability and validity. METHODS: Based on literature analysis, focus group, the Delphi method, and a presurvey, we designed an initial scale. The initial scale comprised two sections: risk factors and risk outcomes for nurses. In January and February of 2023, nurses engaged in "Internet + nursing services" for the elderly in Shanxi Province were chosen through a convenience sampling technique for a questionnaire survey. Subsequently, item analysis and exploratory factor analysis were employed to refine and develop a test version of the scale further. A follow-up questionnaire survey was carried out in March and April 2023 using a similar approach. The reliability and validity of the scale were assessed through confirmatory factor analysis, culminating in the formation of the final scale. RESULTS: The initial survey yielded 244 valid responses. The cumulative variance contributions of the two segments from the exploratory factor analysis were 84.584% and 90.089%, respectively. A subsequent survey garnered 220 valid responses. The confirmatory factor analysis results indicated: χ2/df = 2.086, comparative fit index (CFI) = 0.918, normative fit index (NLI) = 0.855, root mean square of residuals (RMR) = 0.045, and root mean square of error of approximation (RMSEA) = 0.070. These results demonstrate good structural, convergent, and discriminant validity. The content validity index at the item level (I-CVI) ranged between 0.875 and 1.000, while the content validity index at the scale level (S-CVI/Ave) was 0.941. Cronbach's alpha coefficient for the entire scale stood at 0.970. Moreover, the scale exhibited a split-half reliability of 0.876 and a retest reliability of 0.980 (p < 0.01). CONCLUSION: The risk factors and risk outcomes associated with nurses involved in "Internet + nursing services" for elderly individuals, as developed in this study, demonstrate strong reliability and validity. They are well suited to the Chinese national context.

10.
Orthop Surg ; 16(1): 183-195, 2024 Jan.
Article En | MEDLINE | ID: mdl-37933407

OBJECTIVE: Nowadays, more than 90% of people over 50 years suffer from intervertebral disc degeneration (IDD), but there are exist no ideal drugs. The aim of this study is to identify a new drug for IDD. METHODS: An approved small molecular drug library including 2040 small molecular compounds was used here. We found that taurocholic acid sodium hydrate (NAT) could induce chondrogenesis and osteogenesis in mesenchymal stem cells (MSCs). Then, an in vivo mouse model of IDD was established and the coccygeal discs transcriptome analysis and surface plasmon resonance analysis (SPR) integrated with liquid chromatography-tandem mass spectrometry assay (LC-MS) were performed in this study to study the therapy effect and target proteins of NAT for IDD. Micro-CT was used to evaluate the cancellous bone. The expression of osteogenic (OCN, RNX2), chondrogenic (COL2A1, SOX9), and the target related (ERK1/2, p-ERK1/2) proteins were detected. The alkaline phosphatase staining was performed to estimate osteogenic differentiation. Blood routine and blood biochemistry indexes were analyzed for the safety of NAT. RESULTS: The results showed that NAT could induce chondrogenesis and osteogenesis in MSCs. Further experiments confirmed NAT could ameliorate the secondary osteoporosis and delay the development of IDD in mice. Transcriptome analysis identified 128 common genes and eight Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for NAT. SPR-LC-MS assay detected 57 target proteins for NAT, including MAPK3 (mitogen-activated protein kinase 3), also known as ERK1 (extracellular regulated protein kinase 1). Further verification experiment confirmed that NAT significantly reduced the expression of ERK1/2 phosphorylation. CONCLUSION: NAT would induce chondrogenesis and osteogenesis of MSCs, ameliorate the secondary osteoporosis and delay the progression of IDD in mice by targeting MAPK3.Furthermore, MAPK3, especially the phosphorylation of MAPK3, would be a potential therapeutic target for IDD treatment.


Intervertebral Disc Degeneration , Intervertebral Disc , Osteoporosis , Humans , Mice , Animals , Intervertebral Disc Degeneration/drug therapy , Mitogen-Activated Protein Kinase 3 , Osteogenesis/genetics , Drug Repositioning , Sodium
11.
Biomater Res ; 27(1): 133, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-38102651

BACKGROUND: Drug nanocarriers can markedly reduce the toxicities and side effects of encapsulated chemotherapeutic drugs in the clinic. However, these drug nanocarriers have little effect on eradicating breast cancer stem cells (BCSCs). Although compounds that can inhibit BCSCs have been reported, these compounds are difficult to use as carriers for the widespread delivery of conventional chemotherapeutic drugs. METHODS: Herein, we synthesize a polymeric nanocarrier, hyaluronic acid-block-poly (curcumin-dithiodipropionic acid) (HA-b-PCDA), and explore the use of HA-b-PCDA to simultaneously deliver chemotherapeutic drugs and eradicate BCSCs. RESULTS: Based on molecular docking and molecular dynamics studies, HA-b-PCDA delivers 35 clinical chemotherapeutic drugs. To further verify the drug deliver ability of HA-b-PCDA, doxorubicin, paclitaxel, docetaxel, gemcitabine and camptothecin are employed as model drugs to prepare nanoparticles. These drug-loaded HA-b-PCDA nanoparticles significantly inhibit the proliferation and stemness of BCSC-enriched 4T1 mammospheres. Moreover, doxorubicin-loaded HA-b-PCDA nanoparticles efficiently inhibit tumor growth and eradicate approximately 95% of BCSCs fraction in vivo. Finally, HA-b-PCDA eradicates BCSCs by activating Hippo and inhibiting the JAK2/STAT3 pathway. CONCLUSION: HA-b-PCDA is a polymeric nanocarrier that eradicates BCSCs and potentially delivers numerous clinical chemotherapeutic drugs.

12.
Sci Transl Med ; 15(727): eade4619, 2023 12 20.
Article En | MEDLINE | ID: mdl-38117901

Peripheral neurons terminate at the surface of tendons partly to relay nociceptive pain signals; however, the role of peripheral nerves in tendon injury and repair remains unclear. Here, we show that after Achilles tendon injury in mice, there is new nerve growth near tendon cells that express nerve growth factor (NGF). Conditional deletion of the Ngf gene in either myeloid or mesenchymal mouse cells limited both innervation and tendon repair. Similarly, inhibition of the NGF receptor tropomyosin receptor kinase A (TrkA) abrogated tendon healing in mouse tendon injury. Sural nerve transection blocked the postinjury increase in tendon sensory innervation and the expansion of tendon sheath progenitor cells (TSPCs) expressing tubulin polymerization promoting protein family member 3. Single cell and spatial transcriptomics revealed that disruption of sensory innervation resulted in dysregulated inflammatory signaling and transforming growth factor-ß (TGFß) signaling in injured mouse tendon. Culture of mouse TSPCs with conditioned medium from dorsal root ganglia neuron further supported a role for neuronal mediators and TGFß signaling in TSPC proliferation. Transcriptomic and histologic analyses of injured human tendon biopsy samples supported a role for innervation and TGFß signaling in human tendon regeneration. Last, treating mice after tendon injury systemically with a small-molecule partial agonist of TrkA increased neurovascular response, TGFß signaling, TSPC expansion, and tendon tissue repair. Although further studies should investigate the potential effects of denervation on mechanical loading of tendon, our results suggest that peripheral innervation is critical for the regenerative response after acute tendon injury.


Nerve Growth Factor , Tendon Injuries , Animals , Humans , Mice , Cell Proliferation , Nerve Growth Factor/metabolism , Nerve Growth Factor/pharmacology , Stem Cells , Tendons/metabolism , Transforming Growth Factor beta , Receptor, trkA/metabolism
13.
Mol Biol Rep ; 51(1): 39, 2023 Dec 29.
Article En | MEDLINE | ID: mdl-38158445

BACKGROUND: Muscone is a chemical monomer derived from musk. Although many studies have confirmed the cardioprotective effects of muscone, the effects of muscone on cardiac hypertrophy and its potential mechanisms are unclear.The aim of the present study was to investigate the effect of muscone on angiotensin (Ang) II-induced cardiac hypertrophy. METHODS AND RESULTS: In the present study, we found for the first time that muscone exerted inhibitory effects on Ang II-induced cardiac hypertrophy and cardiac injury in mice. Cardiac function was analyzed by echocardiography measurement, and the degree of cardiac fibrosis was determined by the quantitative real-time polymerase chain reaction (qRT-PCR), Masson trichrome staining and western blot assay. Secondly, qRT-PCR experiment showed that muscone attenuated cardiac injury by reducing the secretion of pro-inflammatory cytokines and promoting the secretion of anti-inflammatory cytokines. Moreover, western blot analysis found that muscone exerted cardio-protective effects by inhibiting phosphorylation of key proteins in the STAT3, MAPK and TGF-ß/SMAD pathways. In addition, CCK-8 and determination of serum biochemical indexes showed that no significant toxicity or side effects of muscone on normal cells and organs. CONCLUSIONS: Muscone could attenuate Ang II-induced cardiac hypertrophy, in part, by inhibiting the STAT3, MAPK, and TGF-ß/SMAD signaling pathways.


Heart Injuries , Signal Transduction , Mice , Animals , Angiotensin II , Transforming Growth Factor beta/metabolism , Cytokines/metabolism , Fibrosis , Cardiomegaly/chemically induced
14.
Ann Indian Acad Neurol ; 26(5): 774-777, 2023.
Article En | MEDLINE | ID: mdl-38022469

Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis is a type of autoimmune encephalitis (AE) characterized by antibodies against NMDA receptor. As the most common AE, anti-NMDAR encephalitis affects 54% ~ 80% of patients with AE. It is associated with a high percentage of severe illness. It typically manifests as behavioral and psychiatric disturbance, epilepsy, cognitive decline, decreased level of consciousness, involuntary movements, autonomic dysfunction, central hypoventilation, etc. We report two refractory anti-NMDAR encephalitis. One of them describes a case of anti-NMDA encephalitis coexisting with MOG antibodies. The two patients were administered first-line therapy with glucocorticoids and intravenous immunoglobulin but did not improve clinically. Therefore, the patient was switched to the fully human anti-CD20 monoclonal antibody, ofatumumab. Their consciousness, behavioral and psychiatric disturbance, and capacity to conduct daily tasks improved markedly after sequential therapy with ofatumumab, as demonstrated by the modified Rankin scale (mRS) score. For the first time, we report a successful approach to the treatment of refractory anti-NMDAR encephalitis using the fully human anti-CD20 monoclonal antibody ofatumumab, which serves as an important reference for the treatment of AE.

15.
J Mater Chem B ; 11(45): 10908-10922, 2023 11 22.
Article En | MEDLINE | ID: mdl-37934118

Structural degeneration of a hybrid layer composed of a demineralized dentin matrix (DDM) and adhesive causes unsatisfactory functional outcomes in terms of bonding repair and caries treatment and is accompanied by high prevalence of secondary caries. Clinically, defects in the hybrid layer from insufficient adhesive infiltration, bacterial load from retained infected-dentin, and bacterial attack from the oral cavity are the main threats to degeneration. Currently, there is no strategy to simultaneously address adhesive penetration and bacterial infection. Herein, based on the core role of the strongly-polar hydrated DDM interface in dentin bonding, an interface-reconstructed bonding strategy assisted by electrostatic assembly of broad-spectrum germicidal polyhexamethylene biguanide (PHMB) is proposed that kills two birds with one stone. PHMB is absorbed onto the anionic 3D DDM forming a PHMB/DDM complex. The surface potential of the DDM increases by about 100 mV, the anion content decreases by 20%, and the interface water content decreases by nearly 40%. All of these changes contribute to the penetration of the adhesive, thereby improving the bonding strength and durability. After thermal cycling aging, the bonding strength of the PHMB group was 1.45-1.65 times that of the control group. In terms of antibacterial properties, PHMB treatment not only has a bacterial-killing ability due to the already formed biofilm but also significantly reduces the adhesion of bacteria, thereby delaying the occurrence of secondary caries. In summary, PHMB treatment reconstructed the DDM interface, resulting in a defect-low and inherent antibacterial hybrid layer that improves the bonding effect, treatment of caries and even prevention of secondary caries.


Dental Caries Susceptibility , Dentin-Bonding Agents , Dentin-Bonding Agents/chemistry , Dentin , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/analysis
16.
J Mater Chem B ; 11(47): 11394, 2023 Dec 06.
Article En | MEDLINE | ID: mdl-38013466

Correction for 'A polyhexamethylene biguanide-assembly assisted strategy of dentin bonding greatly promotes bonding effects and caries treatment' by Chang Shu et al., J. Mater. Chem. B, 2023, 11, 10908-10922, https://doi.org/10.1039/D3TB02083E.

17.
Eur Radiol ; 2023 Nov 07.
Article En | MEDLINE | ID: mdl-37932390

OBJECTIVE: To investigate the potential applicability of AI-assisted compressed sensing (ACS) in knee MRI to enhance and optimize the scanning process. METHODS: Volunteers and patients with sports-related injuries underwent prospective MRI scans with a range of acceleration techniques. The volunteers were subjected to varied ACS acceleration levels to ascertain the most effective level. Patients underwent scans at the determined optimal 3D-ACS acceleration level, and 3D compressed sensing (CS) and 2D parallel acquisition technology (PAT) scans were performed. The resultant 3D-ACS images underwent 3.5 mm/2.0 mm multiplanar reconstruction (MPR). Experienced radiologists evaluated and compared the quality of images obtained by 3D-ACS-MRI and 3D-CS-MRI, 3.5 mm/2.0 mm MPR and 2D-PAT-MRI, diagnosed diseases, and compared the results with the arthroscopic findings. The diagnostic agreement was evaluated using Cohen's kappa correlation coefficient, and both absolute and relative evaluation methods were utilized for objective assessment. RESULTS: The study involved 15 volunteers and 53 patients. An acceleration factor of 10.69 × was identified as optimal. The quality evaluation showed that 3D-ACS provided poorer bone structure visualization, and improved cartilage visualization and less satisfactory axial images with 3.5 mm/2.0 mm MPR than 2D-PAT. In terms of objective evaluation, the relative evaluation yielded satisfactory results across different groups, while the absolute evaluation revealed significant variances in most features. Nevertheless, high levels of diagnostic agreement (κ: 0.81-0.94) and accuracy (0.83-0.98) were observed across all diagnoses. CONCLUSION: ACS technology presents significant potential as a replacement for traditional CS in 3D-MRI knee scans, allowing thinner MPRs and markedly faster scans without sacrificing diagnostic accuracy. CLINICAL RELEVANCE STATEMENT: 3D-ACS-MRI of the knee can be completed in the 160 s with good diagnostic consistency and image quality. 3D-MRI-MPR can replace 2D-MRI and reconstruct images with thinner slices, which helps to optimize the current MRI examination process and shorten scanning time. KEY POINTS: • AI-assisted compressed sensing technology can reduce knee MRI scan time by over 50%. • 3D AI-assisted compressed sensing MRI and related multiplanar reconstruction can replace traditional accelerated MRI and yield thinner 2D multiplanar reconstructions. • Successful application of 3D AI-assisted compressed sensing MRI can help optimize the current knee MRI process.

19.
Eur Radiol Exp ; 7(1): 62, 2023 10 20.
Article En | MEDLINE | ID: mdl-37857868

BACKGROUND: High-spatial resolution magnetic resonance imaging (MRI) is essential for imaging ankle joints. However, the clinical application of fast spin-echo sequences remains limited by their lengthy acquisition time. Artificial intelligence-assisted compressed sensing (ACS) technology has been recently introduced as an integrative acceleration solution. We compared ACS-accelerated 3-T ankle MRI to conventional methods of compressed sensing (CS) and parallel imaging (PI) . METHODS: We prospectively included 2 healthy volunteers and 105 patients with ankle pain. ACS acceleration factors for ankle protocol of T1-, T2-, and proton density (PD)-weighted sequences were optimized in a pilot study on healthy volunteers (acceleration factor 3.2-3.3×). Images of patients acquired using ACS and conventional acceleration methods were compared in terms of acquisition times, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), subjective image quality, and diagnostic agreement. Shapiro-Wilk test, Cohen κ, intraclass correlation coefficient, and one-way ANOVA with post hoc tests (Tukey or Dunn) were used. RESULTS: ACS acceleration reduced the acquisition times of T1-, T2-, and PD-weighted sequences by 32-43%, compared with conventional CS and PI, while maintaining image quality (mostly higher SNR with p < 0.004 and higher CNR with p < 0.047). The diagnostic agreement between ACS and conventional sequences was rated excellent (κ = 1.00). CONCLUSIONS: The optimum ACS acceleration factors for ankle MRI were found to be 3.2-3.3× protocol. The ACS allows faster imaging, yielding similar image quality and diagnostic performance. RELEVANCE STATEMENT: AI-assisted compressed sensing significantly accelerates ankle MRI times while preserving image quality and diagnostic precision, potentially expediting patient diagnoses and improving clinical workflows. KEY POINTS: • AI-assisted compressed sensing (ACS) significantly reduced scan duration for ankle MRI. • Similar image quality achieved by ACS compared to conventional acceleration methods. • A high agreement by three acceleration methods in the diagnosis of ankle lesions was observed.


Ankle Joint , Ankle , Humans , Ankle Joint/diagnostic imaging , Artificial Intelligence , Pilot Projects , Magnetic Resonance Imaging/methods
20.
J Orthop Surg (Hong Kong) ; 31(3): 10225536231209552, 2023.
Article En | MEDLINE | ID: mdl-37859589

BACKGROUND: To compare the mid-term follow-up clinical efficacy among three treatment approaches for lumbar degenerative diseases (LDD): standalone oblique lumbar interbody fusion (SF), oblique lumbar interbody fusion combined with lateral screw fixation (LF), and oblique lumbar interbody fusion combined with posterior screw fixation (PF). METHOD: This retrospective study included a total of 71 cases of single level LDD that underwent OLIF in Hospital of Chengdu University of Traditional Chinese Medicine were retrospectively collected between March 2016 and September 2017. Patients were divided into three groups: 24 cases in the SF group, 24 cases in the LF group and 23 cases in the PF group. Various parameters, such as operation time, hospitalization time, and complications, were recorded. The fusion condition was assessed at last follow up. Clinical outcomes were evaluated using the Visual Analogue Scale (VAS) and Oswestry Disability Index (ODI) from pre-operation to 5 years post-surgery. RESULTS: Significantly lower mean operation time and hospitalization time were observed in the SF and LF groups compared to the PF group (p < .05). However, no significant difference in fusion rate was found among the three groups. Regarding clinical outcomes, there was no statistically significant difference in VAS scores between the three groups during all follow-up periods. At the 6th month and 1st year after surgery, the SF and LF groups had significantly lower Oswestry Disability Index (ODI) scores compared to the PF group (p < .05). There was no significant difference in perioperative complication rates among the three groups (p > .05). In the LF group, one case of instrument displacement and urethra injury were reported, while in the SF, LF, and PF groups, 10, 9, and 3 cases of cage subsidence were reported, respectively. CONCLUSION: The study findings suggest that oblique lumbar interbody fusion (OLIF) is a safe and effective treatment for mid-term management of lumbar degenerative diseases (LDD). Compared to the posterior screw fixation (PF) group, both the standalone OLIF (SF) and OLIF combined with lateral screw fixation (LF) groups showed advantages in terms of reduced operation time, shorter hospitalization, and faster symptom alleviation in the short-term. However, OLIF combined with PF demonstrated comparable symptom relief in the mid-term and had the additional benefit of lower cage subsidence rates while improving fusion rates as well.


Bone Screws , Spinal Fusion , Humans , Retrospective Studies , Treatment Outcome , Hospitalization , Lumbar Vertebrae/surgery , Spinal Fusion/methods
...